
ar
X

iv
:a

st
ro

-p
h/

04
10

03
1 

v2
   

7 
M

ar
 2

00
5

The Cosmology of Generalized Modified Gravity Models

Sean M. Carroll1∗, Antonio De Felice2†, Vikram Duvvuri1‡,

Damien A. Easson2§, Mark Trodden2¶ and Michael S. Turner1,3,4∗∗

1Enrico Fermi Institute, Department of Physics,

and Kavli Institute for Cosmological Physics, University of Chicago,

5640 S. Ellis Avenue, Chicago, IL 60637-1433, USA.

2Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA.

3Department of Astronomy & Astrophysics,

University of Chicago, Chicago, IL 60637-1433, USA.

4NASA/Fermilab Astrophysics Center,

Fermi National Accelerator Laboratory, Batavia, IL 60510-0500, USA.

Abstract

We consider general curvature-invariant modifications of the Einstein-Hilbert action that become

important only in regions of extremely low space-time curvature. We investigate the far future

evolution of the universe in such models, examining the possibilities for cosmic acceleration and

other ultimate destinies. The models generically possess de Sitter space as an unstable solution

and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to

dark energy models.
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I. INTRODUCTION

The acceleration of the universe presents one of the greatest problems in theoreti-

cal physics today. The increasingly accurate observations of type Ia supernovae light-

curves, coupled with exquisite measurements of CMB anisotropies and large scale structure

data [1, 2, 3, 4, 5, 6] have forced this issue to the forefront of those facing particle physicists,

cosmologists and gravitational physicists alike.

This problem has been attacked head on, but no compelling, well-developed and well-

motivated solutions have yet emerged. While much work has focused on the search for new

matter sources that yield accelerating solutions to general relativity, more recently some

authors have turned to the complementary approach of examining whether new gravitational

physics might be responsible for cosmic acceleration.

There have been a number of different attempts [7, 8, 9, 10, 11, 12, 13, 14, 15] to modify

gravity to yield accelerating cosmologies at late times. The path we are concerned with

in this paper is the direct addition of higher order curvature invariants to the Einstein-

Hilbert action. The first example of this was provided by the model of Carroll, Duvvuri,

Trodden, and Turner (CDTT) [7] (see also [8]). For subsequent work on various aspects and

extensions of this model, see [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

In particular, the simplest model has been shown to conflict with solar system tests of

gravity [19, 22, 25]. Our approach is purely phenomenological. The evidence for cosmic

acceleration is very sound. In pure Einstein gravity, as matter dilutes away in the expanding

universe, the expansion rate inevitably slows. Our question is can this be avoided within the

gravitational sector of the theory, as opposed to adding new energy sources. One way is by

adding a cosmological constant. In this paper we explore a wider class of modifications that

share the feature of late-time accelerating behavior, thus fitting cosmological observations.

Consider a simple correction to the Einstein-Hilbert action,

S =
M2

P

2

∫

d4x
√
−g

(

R − µ4

R

)

+

∫

d4x
√
−gLM . (1)

where µ is a new parameter with units of [mass] and LM is the Lagrangian density for matter.

This action gives rise to fourth-order equations of motion. In the case of an action depending
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purely on the Ricci scalar (and on its derivatives) it is possible to transform from the frame

used in (1), which we call the matter frame, to an Einstein frame, in which the gravitational

Lagrangian takes the Einstein-Hilbert form and the additional degrees of freedom (Ḧ and

Ḣ) are represented by a scalar field φ. The details of this can be found in [7]. The scalar

field is minimally coupled to Einstein gravity, non-minimally coupled to matter, and has a

potential given by

V (φ) = µ2M2
P exp

(

−2

√

2

3

φ

MP

)

√

√

√

√exp

(

√

2

3

φ

MP

)

− 1 . (2)

Consider vacuum cosmological solutions. We must specify the initial values of φ and φ′,

denoted as φi and φ′
i. For simplicity we take φi ≪ MP. There are three qualitatively distinct

outcomes, depending on the value of φ′
i.

1. Eternal de Sitter. There is a critical value of φ′
i ≡ φ′

C for which φ just reaches the

maximum of the potential V (φ) and comes to rest. In this case the Universe asymptotically

evolves to a de Sitter solution. This solution requires tuning and is unstable, since any

perturbation will induce the field to roll away from the maximum of its potential.

2. Power-Law Acceleration. For φ′
i > φ′

C , the field overshoots the maximum of V (φ)

and the Universe evolves to late-time power-law inflation, with observational consequences

similar to dark energy with equation-of-state parameter wDE = −2/3.

3. Future Singularity. For φ′
i < φ′

C , φ does not reach the maximum of its potential and

rolls back down to φ = 0. This yields a future curvature singularity.

In the more interesting case in which the Universe contains matter, it is possible to show

that the three possible cosmic futures identified in the vacuum case remain in the presence

of matter.

By choosing µ ∼ 10−33 eV, the corrections to the standard cosmology only become im-

portant at the present epoch, making this theory a candidate to explain the observed accel-

eration of the Universe without recourse to dark energy. Since we have no particular reason

for choosing this value of µ, such a tuning is certainly not attractive. However, it is worth

commenting that this small correction to the action, unlike most small corrections in physics,

is destined to be important as the Universe evolves.
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Clearly our choice of correction to the gravitational action can be generalized. Terms of

the form −µ2(n+1)/Rn, with n > 1, lead to similar late-time self acceleration, with behavior

similar to a dark energy component with equation of state parameter

weff = −1 +
2(n + 2)

3(2n + 1)(n + 1)
. (3)

Therefore, such modifications can easily accommodate current observational bounds [33, 34]

on the equation of state parameter −1.45 < wDE < −0.74 (95% confidence level). In the

asymptotic regime, n = 1 is ruled out at this level, while n ≥ 2 is allowed; even n = 1 is

permitted if we are near the top of the potential.

In this paper we seek to extend this approach. For the actions considered in this paper,

a tranformation between the matter and Einstein frames does not necessarily make sense.

Therefore, we would like to analyze the dynamics in the matter frame itself. A technique for

this analysis is presented here.

As an example, we begin by applying this technique to the CDTT model. We will work

in the matter frame with a spatially flat Robertson-Walker metric

ds2 = −dt2 + a(t)2 d~x2 , (4)

with a(t) being the scale factor. The time-time component of the field equations, the Fried-

mann equation in this non-standard cosmology, is

3H2 − µ4

12(Ḣ + 2H2)3

(

2HḦ + 15H2Ḣ + 2Ḣ2 + 6H4
)

=
ρM

M2
P

, (5)

where an overdot denotes differentiation with respect to cosmic time, and H = ȧ/a.

To perform a phase-space analysis of such equations we write Ḣ as a function of H . Let

x = −H(t)

y = Ḣ(t) , (6)

so that

Ḧ =
dḢ

dt
=

dḢ

dH

dH

dt
= −y

dy

dx
. (7)

In this way we may write (5), a third order equation in a(t), as a second order equation

in H(t) and hence as a first order equation in y(x). The fact that the FRW equation for
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any f(R) theory can be reduced to the first-order equation for the spatially flat case (second

order in case of a non-zero spatial curvature) was first introduced in [35], [36] .

Many cosmologically interesting solutions, including accelerating ones, are power-law so-

lutions of the form a(t) ∝ tp. In such cases Ḣ = −H2/p (i.e. y = −x2/p). In anticipation

of finding such solutions as asymptotic solutions to our equations, we define a new function

v(x) by

v(x) = −x2

y
, (8)

with v 6= 0. Power-law solutions in the asymptotic future are then easily identified as

v(x) → p = constant as H → 0.

Furthermore, if

|Ḣ| = |y| → ∞, then |v| → 0 if x 6= 0. (9)

So if x is not zero, as v → 0 we approach the singularity |Ḣ| → ∞. This trick is invoked

throughout this paper.

Here, let us apply it to the simple case of (5). The relevant first order equation is

x
dv

dx
= 2v +

1

2µ4

[

x4 (36 − 216v + 432v2 − 288v3) + µ4 (2v − 15v2 + 6v3)
]

, (10)

with the resulting phase plot shown in figure 1.

Since the x-axis on this plot is (minus) the Hubble parameter, earlier times in the universe

lie to the (negative) left and late times lie closer to x = 0 (in all but exponential or phantom

evolution).

Note that the numerical solution shows the accelerating attractor a(t) ∝ t2, corresponding

to v(x) → 2 as x → 0, as expected from the analytic, Einstein-frame method. Indeed, for

general n this attractor, at v = (2n + 1)(n + 1)/(n + 2) can be obtained directly from the

asymptotic form of the generalization of equation (10). In addition, our method pinpoints a

singularity in the phase space, corresponding to a power-law evolution with exponent p = 1/2

(that of radiation). Both features are also evident from the study of the asymptotically late

time behavior of equation (10). In order to have a constant v0 as a solution, we need

2v2
0 − 5v0 + 2 = 0 , (11)
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FIG. 1: Two phase portraits for the modified gravity model proposed in [7]. The left portrait is in

the coordinates (x, v), for which an attractor at constant v = p corresponds to a power-law solution

with a(t) ∝ tp. The right portrait is for the same theory in the (Ḣ,H) plane, with the unstable de

Sitter solution at (0, 1).

which has two real solutions: v0 = 1/2, 2, as expected.

The singularity at p = 1/2 occurs because the Ricci scalar vanishes for this particular

power. One might worry that this is problematic for describing the radiation-dominated

phase in standard cosmology, since nucleosynthesis occurs during this epoch and provides a

particularly strong constraint on deviations from the standard Friedmann equation at that

time. However, as we shall see later, this is not a problem when matter sources are included

explicitly, since even during radiation domination the Ricci scalar does not vanish exactly,

but rather, has a small contribution from non-relativistic matter.

Nevertheless, the singularity is a new feature that was not found in the Einstein-frame

analysis [7]. This is presumably because R = 0 is a singular point of the conformal transfor-

mation used to reach the Einstein frame. We shall see similar singularities for some of the

more general actions we consider in this paper.

Another way to visualize the solutions to our models is to use a more traditional phase
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portrait in the (Ḣ, H) plane.

The outline of this paper is as follows. In the next section we shall introduce the general

class of actions we are interested in. In section III we analyze the vacuum equations, describ-

ing the singularity and attractor structure in detail before moving on to some simple special

cases. In section IV we introduce matter into the equations, demonstrating briefly that the

late-time attractor solutions of the system remain unchanged and setting up the formalism

used in the appendix to establish stability of the system. In section V we summarize our

findings and comment on the status of these models as origins of cosmic acceleration. The

paper contains two appendices. Appendix A contains definitions of a number of functions

used in the body of the paper and Appendix B consists of a proof of the stability of the

vacuum solutions under the addition of matter.

II. A GENERAL NEW GRAVITATIONAL ACTION

We now generalize the action of [7] to include other curvature invariants. There are,

of course, any number of terms that we could consider. We have chosen to consider those

invariants of lowest mass dimension that are also parity-conserving

P ≡ Rµν Rµν

Q ≡ Rαβγδ Rαβγδ . (12)

Since we are interested in adding terms to the action that explicitly forbid flat space as a

solution, we will, in a similar way as in [7], consider inverse powers of the above invariants.

It is likely that such terms introduce ghost degrees of freedom. We shall not address this

problem here, since it is beyond the scope of this paper. Rather, if ghosts arise we shall

require that some as yet unknown mechanism (for example, extra-dimensional effects) cut

off the theory in such a way that the associated instabilities do not appear on cosmological

time scales [37] (see [14] for an example of a concrete model where ghosts are brought under

control by higher-derivative terms). We therefore consider actions of the form

S =

∫

d4x
√
−g [R + f(R, P, Q)] +

∫

d4x
√
−gLM , (13)
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where f(R, P, Q) is a general function describing deviations from general relativity.

It is convenient to define

fR ≡ ∂f

∂R
, fP ≡ ∂f

∂P
, fQ ≡ ∂f

∂Q
, (14)

in terms of which the equations of motion are

Rµν − 1
2
gµν R − 1

2
gµν f

+ fR Rµν + 2fP Rα
µ Rαν + 2fQ Rαβγµ Rαβγ

ν

+ gµν �fR −∇µ∇νfR − 2∇α∇β[fP Rα
(µδβ

ν)] + �(fP Rµν)

+ gµν ∇α∇β(fP Rαβ) − 4∇α∇β[fQ Rα
(µν)

β ] = 8πG Tµν . (15)

It is straightforward to check that these equations reduce to those of the simple model

of [7] for f(R) = −µ4/R.

We would like to obtain constant curvature vacuum solutions to these field equations.

To do so, we take the trace of (15) and substitute Q = R2/4 and P = R2/6 (which are

identities satisfied by constant curvature spacetimes) into the resulting equation to obtain

the algebraic equation:

(2fQ + 3fP ) R2 + 6 (fR − 1)R − 12f = 0 . (16)

Solving this equation for the Ricci scalar yields the constant curvature vacuum solutions.

Evidently, actions of the form (13) generically admit a maximally-symmetric solution:

R = a non-zero constant. However, an equally generic feature of such models is that this

deSitter solution is unstable. In the CDTT model the instability is to an accelerating power-

law attractor. This is a possibility that we will also see in many of the more general models

under consideration here.

Before we leave this section, note that, in analyzing the cosmology of these general models,

it is useful to have at hand the following expressions, which hold in a flat FRW background

R = 6

(

ȧ2

a2
+

ä

a

)

= 6 (Ḣ + 2H2) (17)

P = 12

(

ȧ4

a4
+

ä2

a2
+

ȧ2

a2

ä

a

)

= 12 [(Ḣ + H2)2 + H4 + H2 (Ḣ + H2)] (18)

Q = 12

(

ȧ4

a4
+

ä2

a2

)

= 12 [(Ḣ + H2)2 + H4] . (19)
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We have provided these both in terms of the scale factor a(t) and in terms of the Hubble

parameter H(t) = ȧ(t)/a(t), since they will be separately important in this paper.

III. VACUUM SOLUTIONS

In this section we study cosmological solutions to the field equations (15) in the absence of

matter sources. Physically, this is important because we are hoping to find novel cosmological

consequences arising purely from the gravitational sector of the theory. Mathematically, this

provides us with valuable insight into the structure of the equations, which take a significantly

simplified form wherein the Hubble parameter may be treated as the independent variable.

As mentioned in the previous section, we will consider inverse powers of our curvature

invariants and, for simplicity, we will specialize to a class of actions with

f(R, P, Q) = − µ4n+2

(aR2 + bP + cQ)n
, (20)

where n is a positive integer, µ has dimensions of mass and a, b and c are dimensionless

constants. [1] We will focus on the case n = 1 for most of the paper, because the analysis

is less involved for that case. For general n the qualitative features of the system are as for

n = 1 and we discuss the quantitative differences in our conclusions.

A. Distinguished Points of the Action (and Equations)

In general, the analogue of the Friedmann equation may be written in the following

convenient form
A + BḦ

C
= M , (21)

where A = A(H, Ḣ), B = B(H, Ḣ) and C = C(H, Ḣ) arise from the gravitational part of

the action and M = M(a) describes the possible inclusion of matter.

[1] Another potentially interesting possibility is a correction of form f(R, P, Q) = µ4R

P
. This term has the

same mass dimension as the µ4/R term of CDTT. However, it turns out that this model does not possess

any accelerating attractors. Specifically, the scale factor asymptotically approaches a(t) ∝ t0.37.
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It is also convenient to write this schematically in terms of our variables of the previous

section as

x
dv

dx
=

x6 f(v) + µ6 v2 g(v)

2µ6 v h(v)
, (22)

where f(v), g(v) and h(v) are 6th, 4th and 2nd degree polynomials respectively in the variable

v, whose explicit form is given in Appendix A. We are often interested in a particular subset

of the phase space, the region where v > 1/2. This is because from nucleosynthesis to the

matter-dominated epoch, we expect Einstein’s equations to provide a good approximation

to the dynamics, and therefore, when matter becomes subdominant we should have 1/2 <

v < 2/3.

There are three types of special points in the phase space plots of these equations:

1. Singular Points of the Friedmann Equation

In our introduction we reconsidered the model of [7] and discovered a singular point of

both the action and the equations of motion, corresponding to a power-law evolution

with exponent p = 1/2. In this particular case the singularity occurred because R ≡ 0

for p = 1/2. In our more general models, analogous singularities occur whenever the

denominator of the Friedmann equation blows up; i.e. at zeros of C, where C is defined

by (21). For the flat cosmological ansatz this occurs when

Ḣ + H2 = −α

4

(

Ḣ

H

)2

, (23)

where we have defined

α ≡ 12a + 4b + 4c

12a + 3b + 2c
. (24)

Recall that a, b, and c are parameters in the Lagrangian (20). In our variables of the

previous section this becomes

v = p1,2 ≡
1

2

(

1 ±
√

1 − α
)

, (25)

each zero having multiplicity 3.
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These singularities only exist if p1,2 are real, i.e. α ≤ 1 and therefore there are many

invariants that do not admit this type of singularity. In the simple case of [7], corre-

sponding to b = c = 0, note that we have α = 1 and recover pc = 1/2 as expected. If

α ≤ 1

p1 ≤ 1/2 p2 ≥ 1/2 (26)

2. Singular Points at which Ḧ → ∞

Points at which Ḧ → ∞ occur at zeros of B and, in our variables of the previous

section, correspond to
∣

∣

∣

∣

dv

dx

∣

∣

∣

∣

→ +∞ (27)

at finite x and v. We denote the zeros by v(x) = v1, v2, where the vi are (in general

complex) constants constructed from a, b and c.

If g(v) 6= 0 one singular point is at x = 0. Otherwise the singularities occur at solutions

of v h(v) = 0, i.e.

v
[

(108a2 + 51ab + 7bc + 30ac + 2c2 + 6b2) v2

− (63ab + 6c2 + 9b2 + 108a2 + 15bc + 54ac) v

+18ab + 3c2 + 6bc + 27a2 + 18ac + 3b2
]

= 0 , (28)

which are given by

v1,2 =
3α

2(4 − α)

(

1 ±
√

α − 1

3

)

v3 = 0 . (29)

3. Late time Stable Points.

Finally, we look for late time power-law attractors. This happens if v(x) → constant

(distinct from our previously mentioned singular values). Taking an asymptotic limit
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of the equations of motion yields

v
[

(288a2 + 18b2 + 8c2 + 144ab + 96ac + 24bc) v4

− (1512a2 + 90b2 + 36c2 + 738ab + 468ac + 114bc) v3

+(1836a2 + 123b2 + 62c2 + 951ab + 678ac + 175bc) v2

−(846a2 + 69b2 + 44c2 + 489ab + 414ac + 113bc) v

+135a2 + 15b2 + 15c2 + 90ab + 90ac + 30bc
]

= 0 , (30)

with solutions

s1,2 =
20 − 3α

8

(

1 ±
√

1 − 120α

(20 − 3α)2

)

s3 = p1 (31)

s4 = p2 (32)

s5 = 0 , (33)

and s2 > s1.

It is clear that only s1 and s2 can be late-time power-law solutions. The other ones

represent singularities; v = 0 implies that y = Ḣ → ∞, whereas s3 and s4 are the

singular points we discussed earlier.

B. Summary of Possibilities

Here we summarize the different vacuum possibilities. It is useful to define the following

two constants

η1 =
280 + 60

√
3

111 + 60
√

3
≈ 1.78 (34)

η2 =
280 − 60

√
3

111 − 60
√

3
≈ 24.9 . (35)

1. α < 1. In this case vi are complex, whereas pi and si are real. It is straightforward to

show that s2 > p2 > 1/2 and s2 > 1.

12



• 0 < α < 1. In this case 1/2 > s1 > p1 > 0 and 1 > p2 > 1/2. Solutions close to

p2 are repelled from it, whereas s1 is an attractor. This leads to decelerating late

time behavior.

• 0 > α > −160/9. Here s1 < p1 < 0 and solutions are attracted to (x = 0, v = 0).

Furthermore p2 > 1.

• α < −160/9. In this case p1 < s1 < 0 and again we have that solutions are

attracted to (x = 0, v = 0). Again, p2 > 1.

2. α > 1. In this case vi are real, whereas pi are complex.

• 1 < α < 4/3. Here v1 < 1/2 and 1/2 < s1 < v2 < 1. Furthermore s2 > 1. Both

s1 and s2 are attractors, but s1 describes a decelerating phase.

• 4/3 < α < η1. Here 1/2 < v1 < 1 and v2 > 1. Both (x = 0, v = 0) and s1,2 are

attractors, with the separatrix being at v1,2.

• η1 < α < 4. In this case 1/2 < v1 < 1 and v2 > 1. Again, both (x = 0, v = 0)

and v2 are attractors and the separatrix is at v1. There are no real solutions for

s1,2.

• 4 < α < η2. Here there are no real late-time attractors since the si are complex.

We also have v2 < 0 and v1 > 1. Solutions either evolve to (x = 0, v = 0) or to

v = +∞, with separatrix at v1.

• α > η2. In this case v2 < 0, v1 > 1 and s1 < s2 < 0. Evolution is to a decelerating

attractor.

3. α = 1. This yields a promising class of solutions. We have

p1 = p2 = v1 = v2 = s1 =
1

2
. (36)

All singularities occur as v(x) → 1/2. However, from nucleosynthesis onwards we

never encounter this point. It is simple to show that solutions evolve to a late-time

power-law attractor describing an accelerating phase, with

s2 =
15

4
= 3.75 , (37)
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which is otherwise independent of a, b, c.

The results of this section may be summarized in figure 2, showing the values of the

various distinguished points as α is varied.

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5

α

s2

s1

p1

p2

v2

v1

FIG. 2: The values of the various distinguished points as α is varied.

C. Inverse Powers of P ≡ Rµν Rµν

Let us begin by dealing only with actions containing modifications involving P ≡ Rµν Rµν .

Our prototype is to consider f(P ) = −m6/P , with m a parameter with dimensions of mass.

Using (16) we can see that there is a constant curvature vacuum solution to this action

given by

R
(P )
const = (16)1/3 m2 . (38)

However, we would like to investigate other cosmological solutions and analyze their stability.

From (15), with the flat cosmological ansatz, the analogue of the Friedmann equation

becomes

3H2 − m6

8(3H4 + 3H2Ḣ + Ḣ2)3

[

Ḣ4 + 11H2Ḣ3 + 2HḢ2Ḧ

+ 33H4Ḣ2 + 30H6Ḣ + 6H3ḢḦ + 6H8 + 4H5Ḧ
]

= 0 . (39)
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We analyze this equation using the same technique, with the same definitions, as in the

example of the previous section. The relevant equation is

x
dv

dx
= 2v2 +

1

2m6v(2v2 − 3v + 1)

[

−x6(24 − 216v + 864v2 − 1944v3

+ 2592v4 − 1944v5 + 648v6) + m6 (v2 − 11v3 + 33v4 − 30v5 + 6v6)
]

. (40)

The solution to this equation is displayed graphically in figure 3. We identify four fixed points

of the system; two attractors at v ≃ 0.77 and v ≃ 3.22 and two repellers at v ≃ 0.5 and

v = 1. Clearly, in order to obtain a late-time accelerating solution (p > 1), it is necessary to

give accelerating initial conditions (ä > 0), otherwise the system is in the basin of attraction

of the non-accelerating attractor at p ≃ 0.77.

-0.006-0.008 0

1

-0.01

0

-0.002-0.004

2

4

x

v

3

-0.8 -0.6 -0.4 -0.2
dH�dt

0.2

0.4

0.6

0.8

1

H

FIG. 3: Two phase portraits for the f(R,P,Q) = −m6/P modification. The left portrait is in the

coordinates (x, v), for which an attractor at constant v = p corresponds to a power-law solution

with a(t) ∝ tp. The right portrait is for the same theory in the (Ḣ,H) plane. There are two

late-time power law attractors corresponding to p = (4 ±
√

6)/2. The (-) branch, represented by

the solid lines, is non-accelerating, while the (+) branch, represented by the dash-dotted line, is

accelerating.
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The exact exponents of the two late-time attractors of the system are obtained by studying

the asymptotic behavior of (40). Substituting in a power-law ansatz and taking the late-time

limit we find that, in order to have a constant v = v0 as a solution, the exponent must satisfy

6v4
0 − 30v3

0 + 41v2
0 − 23v0 + 5 = 0 . (41)

This equation has two real solutions (and two complex ones). The real solutions are: v0 =

2 −
√

6/2 ≃ 0.77 and v0 = 2 +
√

6/2 ≃ 3.22.

Even the non-accelerating attractor is of some interest in this model. In order for structure

to form in the universe, there must be a sufficiently long epoch of matter domination, for

which a(t) ∝ t2/3. As matter redshifts away, however, since the universe is decelerating, we

expect the universe to approach the attractor at p ≃ 0.77. This corresponds to an effective

equation of state weff ≃ −0.13; i.e. negative pressure, although not negative enough to

provide a good fit to the supernova observations.

D. Inverse Powers of Q ≡ Rαβγδ Rαβγδ

Now let us move on to actions containing modifications involving only Q = Rαβγδ Rαβγδ.

Our prototype example is f(Q) = −M6/Q, with M another parameter with dimensions

of mass, and the analysis follows much the same as in the previous subsection, albeit with

different results.

Again, (16) demonstrates that there is a constant curvature vacuum solution to this action

given by

R
(Q)
const = (24)1/3 M2 . (42)

What about other possible cosmological solutions? From (15), with the flat cosmological

ansatz, the analogue of the Friedmann equation becomes

3H2 − M6

24[Ḣ2 + 2H2Ḣ + 2H4]3

[

8H8 + 36H6Ḣ + 54H4Ḣ2

+ 20H2Ḣ3 + 3Ḣ4 + 4H5Ḧ + 12H3ḢḦ + 6HḢ2Ḧ
]

= 0 . (43)
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Employing our phase space technique once more, in the variables best-suited for analyzing

power-law behavior, the relevant equation is

x
dv

dx
= 2v +

1

2M6v[2v2 − 6v + 3]

[

−x6(576v6 − 1728v5 + 2592v4 − 2304v3

+ 1296v2 − 432v + 72) + M6 (8v6 − 36v5 + 54v4 − 20v3 + 3v2)
]

. (44)

It is clear from this that our action consisting of f(R, P, Q) = −M6/Q does not admit any

late-time power-law attractors.

2

1.5

1

-0.01

0.5

0

v

x

2.5

-0.03 -0.02-0.04 0

FIG. 4: Phase portrait for the f(R,P,Q) = −M6/Q modification in the coordinates (x, v), for

which an attractor at constant v = p corresponds to a power-law solution with a(t) ∝ tp.

This is consistent with a study of the late-time asymptotics of (44). As in our previous

analysis, late-time power-law solutions correspond to real solutions to the equation

8v4
0 − 36v3

0 + 62v2
0 − 44v0 + 15 = 0 . (45)

However, no such real solutions exist, confirming our phase-space analysis.
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IV. INCLUDING MATTER

We now show that the late-time behavior of our vacuum solutions remains unaltered upon

the inclusion of matter.

We begin by rewriting the equation of motion in a more convenient form. Let Σµν be the

tensor defined by the left hand side of (15). Then, the generalized Friedmann equation takes

the form

Σ00 = 8πGρ, (46)

where ρ is the energy density of a perfect fluid with equation of state p = wρ. Now, since

x = −H , y = −ẋ, and ρ ∝ a−3(1+w), we have d ln(ρ/ρ0)
dx

= 3(1 + w) v
x
. Combining this relation

with (46) yields the equation of motion

x
dΣ00

dx
= 3(1 + w)vΣ00. (47)

Thus far, we have not imposed any dynamics. Specializing to a theory with f(R, P, Q) =

µ6/(aR2 + bP + cQ) gives

Σ00 =
1

24 x4
F (x, v, s), (48)

with

F = 72 x6 + µ6 v2 g(v) − 2 x v h(v) s

[d(v)]3
, (49)

where s = dv
dx

. The explicit forms of the functions h(v), g(v), and d(v), defined in Appendix

A, are not needed in this section. Substituting (48) and (49) into (47) gives the equation

governing the dynamics of our theory in the presence of matter:

x
dF

dx
= γ (v) F , (50)

where γ(v) ≡ [3(1 + w) v + 4] . Using the chain rule this becomes

x(Fx + Fv s + Fs s′) = γ(v) F , (51)
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where

Fx =
∂F

∂x
= 432 x5 − 2µ6 v h s

d3
(52)

Fv =
∂F

∂v
= µ6 v2 gv + 2 v g − 2 xh s − 2 x v hv s

d3
− 3 µ6 v2g − 2xvhs

d4
dv

Fs =
∂F

∂s
= −2µ6 x v h

d3
(53)

and a prime denotes differentiation with respect to x.

Seeking late-time power law behavior, we take the limits x → 0 and s → 0 in (51).

This yields the condition g(v0) = 0, which is solved by the same power law fixed points as

those obtained in vacuum. This is as one might expect, since matter redshifts away in the

asymptotic future. However, the above description proves useful for dealing with the issue of

stability. Since this is somewhat technical, we relegate the details to Appendix B and merely

assert here that these fixed points do remain stable in the presence of matter sources.

V. COMMENTS AND CONCLUSIONS

In the extreme low curvature regime, our only tests of general relativity are cosmological.

The discovery of new phenomena at these scales may point to new matter sources, but

alternatively may hint at hitherto undetected modifications of gravity.

The acceleration of the universe provides a particular challenge to modifications of gravity.

Unlike the known perturbative corrections to the Einstein-Hilbert action arising from string

theory, late time acceleration requires modifications that become important at extremely

low energies, so low that only today, at the largest scales in the universe, is the resulting

curvature low enough to lead to measurable deviations from general relativity.

These considerations led some of the current authors and others to consider new terms in

the action for gravity that consist of inverse powers of the Ricci scalar. It is easy to show that

such an approach introduces a de Sitter solution. However, this solution is unstable to a late-

time accelerating power law attractor. For appropriate choices of parameters, this theory

is a candidate to explain cosmic acceleration without the need for dark energy, although

the simplest such theories are in conflict with solar system tests. For Lagrangians that are
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functions of only the Ricci scalar, there exists a map to an Einstein frame, in which the

new degrees of freedom are represented by a scalar field. As a result, such modified gravity

theories share many features in common with some dark energy models.

In this paper we have introduced a much more general class of modifications to the

Einstein-Hilbert action, becoming relevant at extremely low curvatures. Specifically, we

have considered inverse powers of arbitrary linear combinations of the curvature invariants

R2, P ≡ Rµν Rµν and Q ≡ Rαβγδ Rαβγδ. Such modifications are not simply equivalent to

Einstein gravity plus scalar matter sources.

We have performed a general analysis of the late-time evolution of cosmological solutions

to these theories. Many of the theories exhibit late-time attractors of the form a(t) ∝ tp,

with p some constant power. Indeed, there are often multiple such attractors. For a large

class of theories there exists at least one attractor satisfying p > 1, corresponding to cosmic

acceleration.

The detailed structure of cosmological solutions to these theories turns out to be quite

rich and varied, depending on the dimensionless parameters entering the particular linear

combination. Two distinct types of singularities may exist, as well as the late-time power

law attractors. We have identified all those theories for which the late time behavior is

consistent with the observed acceleration of the universe, providing a whole new class of

theories - generalized modified gravity theories - which are alternatives to dark energy.

The results we have found for the modification f = µ6/(a R2 + b P + c Q) may be gener-

alized to modifications

f =
µ4n+2

(a R2 + b P + c Q)n
, (54)

using exactly the same calculational techniques.

In general there are power-law attractors with the following exponents, whenever they

are real

vgen
1,2 =

8n2 + 10n + 2 − 3α ±
√

Γ

4(n + 1)
, (55)

where

Γ = 9n2α2 − (80n3 + 116n2 + 40n + 4) α

+ 64n4 + 160n3 + 132n2 + 40n + 4 . (56)
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Clearly, as n → ∞, the smaller attractor tends to 0, whereas the larger one increases linearly

as 4n.

Two special cases are

f = −m4n+2

P n
,

f = −M4n+2

Qn
, (57)

for which the power law attractors, v1,2 are

v
(P )
1,2 =

12n2 + 9n + 3 ±
√

144n2 + 120n3 − 15n2 − 30n − 3

2(3 + 3n)
(58)

v
(Q)
1,2 =

4n2 + 2n + 1 ±
√

16n4 − 16n2 − 10n − 1

2n + 2
. (59)

For n = 1, all the above expressions agree with the values found earlier. It is interesting

to note that v
(Q)
1,2 are imaginary for n = 1, but are real for all n > 1.

Of course, much remains to be done. We have not addressed solar system tests of these

theories since this is a complicated analysis that is beyond the scope of our current paper.

We have not focused on detailed comparisons between our models and the supernova data

and it is possible that there are specific signatures of this new physics in such data. For

example, the modified Friedmann equations arising from the theories presented here should

directly provide information about the jerk parameter. We intend to consider such effects,

not only in the present models, but in those proposed by us and other authors, in a separate

paper focused on the connections of these models with observations. In this context, as with

the case of the simple modifications introduced in [7], it may also be interesting to study

more complicated functions of the curvature invariants we have considered.
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APPENDIX A: SOME DEFINITIONS

In Section III we defined

α =
4 (3a + b + c)

∆
, (A1)

where

∆ = 12a + 3b + 2c . (A2)

We should distinguish betweeen two cases:

1. ∆ = 0

In this case α diverges, but we may define

g(v) = (3a + b + c) (282a + 69b + 44c) v + 15 (3a + b + c)2 (A3)

h(v) = 3 (3a + b + c)2 (A4)

d(v) = 3a + b + c . (A5)

Note that both ∆, and 3a+b+c, cannnot vanish simultaneously, as this causes the Friedmann

equation to be singular for all values of x and v.

2. ∆ 6= 0

In this case we have

g(v) = 2 ∆2 (v − s2) (v − s1) (v − p2) (v − p1) (A6)

h(v) = ∆2
(

1 − α

4

)

(v − v2) (v − v1) (A7)

d(v) = ∆ (v − p2) (v − p1) , (A8)
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where either v1,2 or p1,2 are complex unless α = 1, in which case, v1,2 = p1,2 = s1 = 1/2 and

s2 = 3.75. Also s1,2 in general may be complex. As we saw in Section III, si, vi and pi are

all functions of α only.

APPENDIX B: STABILITY OF FIXED POINTS IN THE PRESENCE OF MAT-

TER

Let us rewrite (51) as a system of first-order ordinary differential equations

x′ = 1 (B1)

s′ =
γ(v) F

xFs

− Fv

Fs

s − Fx

Fs

(B2)

v′ = s . (B3)

Treating x as a dependent variable makes the system autonomous, facilitating a phase-space

analysis.

To obtain the phase portrait of the system we define a vector field by ~W T ≡ (x′, s′, v′)

and plot this in the vicinity of the fixed point. In figure 5 we show a 2D slice of this phase

portrait by choosing a section at constant x. Note that at the fixed point, ~W (0) = (1, 0, 0).

To analyze the stability of the system, we first linearize the system about the fixed point

v = v0, s = 0, and x = x0 ≪ 1 (all expressions evaluated at these values of v, s and x will

carry the superscript (0))

We write the linearized system of equations as

Wi =
∑

α

[M ](0)iα (ηα − η(0)
α ) + W

(0)
i , (B4)

the matrix M being defined by

[M ](0)iα =

[

∂Wi

∂ηα

](0)

, (B5)

and

~η ≡











x

s

v











. (B6)
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FIG. 5: Phase plot for the linearized equations close to the power law solution in the coordinates

(x, v), for which an attractor at constant v = p corresponds to a power-law solution with a(t) ∝ tp.

Now, introducing equilibrium coordinates

u1 = x − x0 (B7)

u2 = s (B8)

u3 = v − v0 , (B9)

we finally obtain the linearized equations

u′
1 = 1 (B10)

u′
2 =

γ0 + σ0 − 1

x0
u2 −

γ0 σ0

x2
0

u3 (B11)

u′
3 = u2 , (B12)

with σ0 =
v0 gv,0

2 h0

.
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Notice that the first equation has decoupled from the other two. Hence, it suffices to

study the behavior of the subsystem (u2, u3). We will use standard results from the theory

of dynamical systems to do so (see [38]).

In the vicinity of the fixed point, the behavior of the system can be classified by the

eigenvalues of the sub-matrix Mij , with i, j = 2, 3, with characteristic equation

λ2 − M
(0)
2s λ − M

(0)
2v = 0 . (B13)

Since we are only interested in values of v and w (the equation of state parameter) which

satisfy v > 1/2 and −1 < w ≤ 1 (see [39, 40, 41] for arguments why this is a sensible

choice, and [42, 43] for how one may be tricked into inferring values outside this range

when considering gravitational theories other than General Relativity), we have that γ0 > 1.

Furthermore if we choose v0 = s2 (see Section III), the value of the bigger power law, typically

σ0 > 0. This implies that both M
(0)
2s and M

(0)
2v are negative, so that s2 is either a stable node

or a stable spiraling helix. The latter case is tantamount to stability.

We have a stable spiralizing helix if

(M
(0)
2s )2 + 4 M

(0)
2v < 0. (B14)

If not, we get a stable node. Relation (B14) leads to the condition

(γ0 + σ0 − 1)2 − 4 γ0 σ0 < 0 , (B15)

which holds for all x0 ≪ 1.

Applying the last condition to the case α = 1 and w = 0 (dust), we have that (see

Appendix A)

σ0 =
4

3
s2 (s2 − 0.5) = 16.25 (B16)

and

γ0 = 3 s2 + 4 = 15.25. (B17)

For these values of σ and γ, (B15) is easily satisfied, so that the power law solution s2 = 3.75
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is a stable spiraling helix.
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